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ABSTRACT 

Viscous fluid flows with curved streamlines can support both centrifugal and viscous 
travelling wave instabilities. Here the interaction of these instabilities in the context of the 
fully developed flow in a curved channel is discussed. The viscous (Tollmien-Schlichting) 
instability is described asymptotically at  high Reynolds numbers and it is found that it 
can induce a Taylor-Giirtler flow even at  extremely small amplitudes. In this interaction, 
the Tollmien-Schlichting wave can drive a vortex state with wavelength either comparable 
with the channel width or the wavelength of lower branch viscous modes. The nonlinear 
equations which describe these interactions are solved for nonlinear equilibrium states. 

This work was supported by the National Aeronautics and Space Administration under NASA Contract 
Nos. NAS1-18107 and NAS1-18605 while the second and third authors were in residence at the Institute for 
Computer Applications in Science and Engineering (ICASE) , NASA Langley Research Center, Hampton, 
VA 23665. 
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1. Introduction. 
There are many fluid flows of practical importance where destabilizing centrifugal and 

viscous instability mechanisms are both present. Thus, for example, the flow in a curved 
rectangular duct or the flow over parts of a laminar flow wing (see Harvey and Pride 
(1982)) can support both Taylor-Gbrtler vortices and Tollmien-Schlichting waves. Indeed 
the latter flow can in turn support Rayleigh instabilities associated with the highly in- 
flectional velocity profiles in some directions. In these flows the possibility exists that 
the nonlinear interaction of the different instability mechanisms might produce premature 
transition to turbulence. In that regard a potentially significant result from the recent 
work of Hall and Smith (1988a) is that interacting oblique Tollmien-Schlichting waves can 
generate longitudinal vortices essentially identical to Taylor-Gbrtler vortices even in the 
absence of wall curvature. 

One of the first calculations on the interaction of Tollmien-Schlichting (TS) waves and 
Gbrtler vortices was given by Nayfeh (1981). Nayfeh discussed the effect of a Gbrtler 
vortex of given size on the growth of oblique TS waves. The amplitude of the vortex was 
assigned arbitrarily however and an eigenfunction shape found by solving the parallel-flow- 
approximation Gbrtler-vortex equations. It is now known (Hall 1982a, 1983) that, in the 
wavenumber regimes considered by Nayfeh, these equations have solutions of no relevance 
to spatially growing vortices. Furthermore, the amplitude of the vortex cannot be assigned 
arbitrarily; it must of course be determined by either a numerical or analytical solution of 
the Navier-Stokes equation as in Hall (1982b, 1988). Having made these approximations 
Nayfeh found that the vortices could have a massive effect on the growth of TS waves. 
Later Malik (1988) showed that Nayfeh’s numerical calculations were incorrect and that 
his conclusions were in error. 

More recently Bennett and Hall (1988) examined the effect of finite amplitude G6rtler 
vortices in fully developed flows on the growth of lower branch TS waves. Here the non- 
linear vortex state was found by solving the Navier-Stokes equations and a linear stability 
analysis of the solutions was given. It was shown that even small amplitude vortices can 
have a significant effect on TS growth rates. The vortex flow found by Bennett and Hall 
had a wavelength comparable to the depth of the channel in which the flow occurred. The 
asymptotic structure of TS waves appropriate to the lower branch of the neutral curve 
corresponds in general to TS waves with a small spanwise wavenumber and Bennett and 
Hall showed how this structure could be modified to allow for a faster spanwise dependence 
induced by the vortices . 

The first nonlinear description of the interaction of vortices and TS waves was given 
by Hall and Smith (1988a). Here it was shown that long wavelength vortices and oblique 
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TS waves undergo a resonant triad interaction at small amplitudes. The interaction is, 
in the first instance, governed by ordinary differential triad amplitude equations which 
possess a finite time singularity. At higher amplitude the interaction is controlled by 
a coupled partial differential-ordinary integro-differential equation system. The solution 
of the system was found to depend crucially on the orientation of the TS waves to the 
vortices. The most dangerous type of interaction concerns TS waves propagating in a 
direction making an angle of more than 41.6' to the vortices since the resulting interaction 
produces a finite time singularity. 

In this paper we shall investigate the stronger type of interaction which occurs after 
this singularity develops. The size of the TS waves is fixed by the condition that the 
downstream velocity component is perturbed at zeroth order by the vortex induced by 
the interacting TS waves. Thus this interaction leads to an 0(1) change from the basic 
state that exists in the absence of vortices. If the size of the TS wave is decreased then 
a weakly nonlinear bifurcation governed by a cubic order amplitude equation typical of 
those found when using the S tuart-Watson method is retrieved. Surprisingly the stronger 

type of interaction can occur at extremely small TS amplitudes and both with and without 
wall curvature being present. The fact that such a relatively small TS wave can have such 
a large effect on the basic state is due to the large initial forces associated with the small 
streamwise length scale of the waves. The nonlinear equilibrium states appropriate to 
this interaction must be found numerically. A similar extension of the Bennett and Hall 
work into the nonlinear regime is also discussed for vortex flows of cross-stream wavelength 
comparable to the channel depth. We note here that other nonlinear states are accessible 
by routes other than that described in this paper; see, for example, Hall and Smith (1988b) 
where the vortex-TS interaction for external flows is discussed. The question of whether 
the present route described is physically the most relevant or whether one of the 'by-pass' 
routes dominates in an experiment cannot yet be answered. 

In addition, a t  small vortex wavenumbers the three-dimensional breakdown of a 2D-TS 
wave can be described by an analysis of our interaction equations. Thus we determine the 
size of '2D-TS waves which are neutrally stable to oblique TS waves. A key feature of this 
secondary instability process is the longitudinal vortex system induced by the interacting 
oblique waves. Furthermore the interaction can occur in a straight channel, thus yielding 
a mechanism for the breakdown of 2D-TS waves in parallel flows. 

The procedure adopted in the rest of this paper is as follows: in $2 the nonlinear 
equations governing fully nonlinear vortex flows in curved channels are described; in $3 
these equations are solved in the presence of vortices of 0(1) cross-stream wavenumber 
and the possible equilibrium states are described; in $4 the corresponding calculation for 
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I small wavenumber vortices is described; and in $5 the instability of 2D-TS waves in a 
straight channel is discussed through the interaction equations derived in $4. Finally in $6 
we discuss our results and draw some conclusions, mainly that nonlinear effects lead to a 
supercritical bifurcation to a mixed vortex-TS state. 

, 

2. Formulation of the disturbance equations for curved channel flows. 
Consider the flow of a viscous incompressible fluid in a curved channel with walls defined 

by r* = a, a + d with respect to cylindrical polar co-ordinates (r*, 8*, z*) .  It is assumed 
that the curvature parameter, 6, defined by 

d 6 = -  
a’ 

is small. The flow is driven by the streamwise pressure gradient 
1 dp* - -12uV,r* 
p de* d2 ’ -- - 

where p and Y are the density and kinematic viscosity of the fluid respectively, whilst V, 
is a typical streamwise flow speed. The pressure gradient (2.2) drives a velocity field v, 

in the streamwise direction and 

v, = V,U(Y), 

U(Y) = UO(Y) + 0(6), 
where for small values of 6 

I 

with 
r* - a 

UO(Y) = Y), Y = 7- 
t The dimensionless variables x , z ,  and t are then defined by 

t*u t = -  
d2 . 

Z* , , z = -  
a d ’  

a8 * z=- 

(2.5a, b) 

(2.6a, b, c) 

where t* denotes the (dimensional) time. If (u,  v ,  w )  is the velocity field scaled on V, with 
respect to ( x ,  y, z )  and the pressure is scaled on pVA then the Navier-Stokes equations can 
be written in the form 

1 d u  621 av aw 
0, --+-+-+-= 

3 d x  3 d y  at 

6uv 
- N U + -  1 6 2  26 dv 1 d p  -(V2 - at - -121 + -- - -- - 

Re 32 R e 3 2 d ~  3 d ~  3 ’  

1 b2 26 a u  d p  6212 

Re 3 2  Re32dx dy 3 
-(V2 - at - --)v - -- - - = N v  - -, 

1 -(V2 - dt)w - 9 = N w ,  
Re d Z  

3 

(2.7a, b, c, d )  



where the Reynolds number Re is defined by 

d 
Re = V,- 

U 

and 
3 = 1 + 6 y ,  

1 6 
32 = 3 

v2 -a2 + a; + -a, + a;, (2.86, c ,  d )  

N = (./?)a, + va,  + wa,. 

The Taylor number T is then defined by 

T = 4Re26, (2.9) 

and it is known from the work of Dean (1928) that instability in the form of Taylor vortices 
occurs first for 0(1) spanwise wavelengths with T also an 0(1) quantity. In view of the 
smallness of 6 it follows from (2.9) that Taylor vortices first occur a t  high values of the 
Reynolds number. The flow is therefore susceptible to lower branch Tollmien-Schlichting 
instabilities with wavenumbers of order Re- f in the azimuthal direction. It is the nonlinear 
interaction of these two modes of instability which will be discussed in the next section. 

However, because a primary aim of the present calculation is to shed light on the related 
external flow problem where long wavelength Giirtler vortices are important in the initial 
development of the flow, we consider a closely related interaction problem arising from the 
weakly nonlinear theory of Hall and Smith (1988a). Here the Taylor vortices occur with 
axial wavenumbers O(Re- f) which are comparable with the wavenumbers of lower branch 
Tollmien-Schlichting waves. These long wavelength vortices occur at relatively high values 
of the Taylor number T - O(Re;) which requires that Re - O(6-A) whereas the previous 
interaction has Re - O(S-i). Thus, for a given value of Re, the former type of interaction 
occurs first when 6 is increased from zero. Alternatively, for a given channel with 6 fixed, 
the former interaction occurs a t  the lowest values of Re. However there is some indication 
from the work of Hall and Smith (1988a,b) that the second interaction can occur even at  
zero values of T, and so it is important to understand its structure. 

Finally in this section we write down the form of the solutions of (2 .7)  appropriate 
to fully nonlinear Taylor vortices. Firstly, for 0(1) vortex wavelengths the pressure p and 
velocity field ( u , v , w )  can be written as 

122 ?, 
Re 2Re 

p = [-- + 7 ] [ 1 +  o(Re-71 

I .., 
v w  

( u , v ,  w )  = [Uo + 6, -, -][1+ O(Re-l)]. 
2Re 2Re 

(2.10a, 6 )  
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Here ii, G,G, 5 are functions of t ,  y, z and satisfy 

1 1,  
2 O - 2  [Vi - at]& - -vu' - -(ijGu + GGZ) 

.., G = G = w = O ,  y = O , l .  

with Vi = + ai. 

(2.11~2, b, c, d ,  e) 

The solution of the linearized form of the above equaions shows thaw Taylor vortices 
grow exponentially in time for T > T, - 5162. and weakly nonlinear theory (Seminara 
(1975)) can then be used to show that the most unstable mode is stabilized by nonlinear 
effects. The neutral curve for the linear stability problem is shown in Figure 1. 

In the fully nonlinear regime possible stable finite amplitude solutions of (2.11) can be 
found by stepping the equations forward in time until the flow equilibrates. Bennett and 
Hall (1988) investigated the instability of these vortex flows to small Tollmien-Schlichting 
waves. Here in contrast we allow the Tollmien-Schlichting waves to be sufficiently large 
that they have an 0(1) effect on the vortex flows. 

Second, if the vortex wavelength is O(Re-4) we define 

(2.12a, b)  

and (2.10) is modified to give 

- 122 5 + -][I + O(Re-t)], 
2Re-i- P =  

(2.13~2, b)  
I I 

V W 
[ u , ~ ,  w] = [UO + ii, - 7 ] [ 1 +  o(Re-t)]. 

2Re' 2 R e ~  
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The functions fi, 6, i; and 5 are now functions of y, 2, and t and satisfy 

a6 ai; -+- -  - 0, 
ay dZ 

1 ,  1 ..,- 
2 2 

{a; - at}; = -vu; + -(vuy + i;q, 

(2.14a, b, c, d ,  e )  

+ i;i;z}, 

- - -  u = v = w = 0, y = 0 , l .  

The linearized form of this system has unstable disturbances for any nonzero value of ?. 
Indeed the neutral value o f ?  is proportional to k-2 if k is the axial wavenumber. This 
means that finite amplitude solutions of (2.14) cannot be found by integrating forward in 
time since the energy of the disturbance will rapidly cascade into the higher harmonics. 
We return to the long wavelength limit in §4, since we concentrate next on the nonlinear 
interaction problem for = O( 1). 

3. The nonlinear evolution equations for TS waves and Taylor vortices of 0(1) 
wavelength. 

Since the only major difference between the present calculation and that of Bennett and 
Hall (1988) is that the TS wave now has an 0(1) effect on the vortex only the essential details 
of the flow structure will be given. The size of the TS wave is fixed by the requirement 
that the nonlinear terms in the y and z momentum equations be comparable with those 
in (2.7c,d). This forcing is most important away from the viscous wall layers of thickness 
Re-; in which the TS waves adjust to the no-slip condition at the wall. It is convenient 
a t  this stage to define the small parameter E by 

E = Re-;.  

Suppose then that TS wave is proportional to 

E = exp[i( QlEX - I t  F)] 
where the wavenumber a and the slowly varying frequency n are real. The frequency 
and amplitude of the wave must vary on the vortex time scale in order to allow for the 
situation when the vortex flow is evolving in time. If the vortex flow is in equilibrium then 
the frequency and amplitude of the TS wave are constant. 
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Away from the viscous layers near y = 0 , l  the velocity field and pressure expand as 

p = (-12x/Re + po/2Re2 + [e8plE + complexconjugate] + O(e7). 

The above expansions are substituted into (2.7) and the zeroth order system for the x 
independent part of the flow satisfies the vortex equations (2.11) with (ii, G,G, ji) replaced 
by (UO, V O ,  WO, PO)  and with forcing terms F1,FZ on the right hand sides of (2.11c,d). These 
forcing terms come from the interaction of the TS wave with itself and are given by 

F1 = 2[(-iaulv; + wlv;Y + w1v;J + complexconjugate], 

F2 = 2[(-icruulw; + vlwiY + wlwi,) + complexconjugate]. 
(3.2a, b) 

(In these two equations, * denotes complex conjugation.) The boundary conditions for 

(UO, V O ,  WO, PO)  come from the no-slip condition 

uo = vo = wo = Oony = Oand 1. 

together with a periodicity condition in z. This follows from the fact that the forcing terms 
become negligible in the wall layers. 

Now consider the zeroth order approximation to the TS wave equations in the core. 
We find that they are identical to the corresponding equations in Bennett and Hall’s linear 
analysis, so that writing U = uo + UO we have 

iau1+ V I Y  + WlS = 0, iaUu1+ WIUY + W I D z  = 0 
(3.3a,6, c ,  d) 

- - 
iaUv1 = -plv,iaUwl = -p1 8 ,  

together with the tangential slipping condition at the walls 

V 1  = 0, y = 0, l .  

Bennett and Hall simplified these equations by introducing a normalized pressure term 4 : 

~1 = AV24/2U, 211 = -iaA&/D, ~1 = -iaAcPz/D, 

where p lo ( t )  and the amplitude A(t) need to be determined and 4 satisfies the core equation 

4ll 4 z  (-) + (-) = 0. rjperiodic inz. u2 Y u2 z 
(3.4) 
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A related coreflow problem arises in Smith (1977). We can now eliminate u1, wlandq from 
the forcing terms in the vortex equations to give 

(3.5~2, b)  

We note that the last terms in these equations can, if necessary, be absorbed into the pres- 
sure derivatives in the y, z vortex equations. In the two-dimensional case U = o(y), 4 = 

+(y) and we see that F2 0 , and (using equation (3.5)) we note that F1 can be completely 
absorbed into pov. Thus for flows that are strictly two-dimensional nonlinearity occurs only 
at larger values of A, as in Hall and Smith (1982). 

Because the leading order wave equations are inviscid it is necessary to consider the 
flow within two viscous wall layers at  y = 0 , l .  The flow in these regions is exactly the 
same as in linear theory since the TS waves are sufficiently small. Thus 

y = €2Y 

in the lower viscous layer and 

E = {(c2x~(z,  t)Y, -€l lpo2(z,  t )Y2/2 ,  egpO(z, t ) ~ )  

+ [ (PU, €9V, €7W) E + complex conjugate] + - - -}, 
p* = pu:{-l2€7x - P p o 2 Y  

(3.6~2, b)  

+[(c8P + e1OQE + complexconjugate] + .}. 

where A0 can be determined from &(z,  t) = Uvlv=0.  The equations to determine U, V, W, P 
are 

iau + vv + Wz = 0. 

Pv = Qv = P2 = O,i(-n,XoY)W = -Qz + Wuv, 
with boundary conditions U = V = W = 0 

tions with the core : 
on Y = 0, together with matching condi- 

and a periodicity condition. An important feature of these equations is the presence of a 
second order pressure term Q. We need to include this term because the z variation of the 
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flow is relatively fast compared to the x variation of the waves, 0(1) as opposed to O(c), so 

the z-derivatives of this smaller pressure will come in at higher order. 
These boundary-layer equations were solved by Bennett and Hall (1988) in terms of 

Airy functions Ai( E )  to give an eigen- or dispersion-relation. The equations governing the 
wall layer flow are then matched to the coreflow solution to give the following first order 
differential equation in Qz , 

where 
Q t 

( 3 . 8 ~ )  

(3.86) 

(3.8c, d) 

A similar equation involving Xl(z, t) = Uulu=l arises from the boundary-layer at y = 1. By 
applying the periodicity condition in z, combining the two results to eliminate plo and A 
we can determine the eigenrelation. This is somewhat unweildy to write down but can 
best be calculated from the following: 

(3 .94 

where 27r/k is the period of the vortices and fn(z) and gn(z) satisfy the following first order 
differential equations, 

with boundary conditions 

fn(0) = 0, gn(O) = 0, 

with $ and K defined above and t n  given by 

(3.9b, c) 

(3.9d) 

In order to facilitate the numerical solution of the vortex equations it is convenient to 
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eliminate the pressure from the y and z momentum to give 

{ V 2  - at}uo - ~ U O L J ;  =  NU^, 

where N = + woa,} 
satisfies the 'core' equation 

(3.10) 

UO = 210 = wo = 0,  y = 0 , l '  

and q5 appearing on the right hand side of the equation for uo 

(3.4). 
In the absence of a Tollmien-Schlichting wave it is well-known that, without any loss 

of generality, we can take ~0,210 to be even functions of z and wo is then an odd function 
of z. In fact (3.4), (3.10) and the wall equations show that the forced equation also admits 
a solution with u0,uO even in z with wo odd in z. In this case Q and the corresponding 
upper wall pressure together with q5 are even functions of z. Thus at 0 ( 1 )  wavelengths the 
mixed vortex-TS state is found by solving (3.10) subject to the TS wall equations (3.9b,c). 

The numerical method. 
When the Tollmien-Schlichting waves are small, as in the linear problem, the terms 

F1 and F2 become zero to leading order and the vortex and dispersion equations then 
decouple. Bennett and Hall solved equation (3.10) with F1 F2 0 using the method 
of Rogers and Beard (1969) for solving the Taylor vortex equations, by expanding the 
vortex velocities in Fourier sine and cosine series in z and by advancing in time to reach a 
steady solution. The nonlinear terms were calculated explicitly. Equation (3.4) was then 
solved for the wave pressure q5 by using finite differences in both y and z and iterating to 
a solution. Several thousand iterations were required, the exact number depending on the 
method used and the step lengths in y and z. Once the skin-frictions A o , A 1  and pressure 
derivatives q5uuu~u=o,l had been determined a and n were found by solving the dispersion 
relation (3.9) using Runge-Kutta methods. The Airy functions were calculated using a 
combination of ordinary and asymptotic series, depending on the value of the argument t. 

We could adapt this approach to solve our unsteady nonlinear problem in the following 
way. First we fix the T-S wave number a, the initial vortex velocity % ( t o )  and wave 
pressure q5(to). We then guess an amplitude at the next time step I A(t1) 1 and use it and 
+(to)  to calculate the forcing terms F1 and F2. The vortex equations (3.10) can then be 
solved for %(tl) while q5(tl) can be found from the pressure equation (3.4) using the new 
velocity. The eigenrelation (3.9) can then be solved for hZ(t1). The guess A(t1) can then 
be iterated on, until the imaginary part of is zero. This process could then be repeated 
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at the next time step t 2 .  We would then be able to observe the wave amplitude I A(t )  I 
evolve in time for various wave-numbers a! away from the neutral point. The disadvantage 
with this method is that at  each time step equation (3.4) needs to be solved accurately 
several times. The iterative method used by Bennett and Hall to solve (3.4) was very slow, 
taking up about half of the computing time for the entire linear calculation. We therefore 
feel a quicker scheme is needed for this part of the problem in order to carry out extensive 
numerical investigations using this approach. 

It is possible however to calculate solutions to the steady nonlinear interaction problem 
less expensively. The method used is as follows. First we fix the term cy2 I A l 2  that occurs 
in equations (3.10). Starting with a guess for 140 and q5 we march forward in time with the 
uo, vo equations. At  each time step we update q5 from equation (3.4) by performing a few 
iterations. The forcing terms F1 and F2 can then be updated for the next time step. We 
continue this process until 140 and q5 have settled down to steady solutions. The dispersion 
relation (3.9) can then be solved for real a! and n. Once a! is known the steady amplitude 
I A I can be determined. Even if we were to solve the pressure equation (3.4) accurately 
at  each time step, the velocities a(t) that are produced before a steady solution emerges 
are not solutions of the physical problem. This is because we would find when we solved 
the eigenrelation (3.9) that in order to make fl real we would have to have different cy’s at 
each time step, whereas the theory requires a! to be independent of time. Only when the 
calculation has settled down to a steady solution do we have anything that makes sense 
physically. This means that the algorithm may well converge on unstable solutions as well 
as the stable ones, although of course we will not be able to tell which is which. Because q5 
is only iterated upon a few times at each time step the overall time taken for this method 
is about equal to that for the linear calculation. 

Since the TS wave part of the equations is still linear the calculation of q5 and the 
solution of the eigenrelation (3.9) are unchanged from Bennett and Hall. The algorithm 
used to step forward (3.4), (3.10) in time is virtually identical to that used by Bennett and 
Hall. The only difference is the presence in (3.10) of the forcing terms F1 and F2 which 
are periodic functions of z respectively. All the periodic functions of z can be expanded in 
the form 

00 

uo = uOneinka (3.11) 
-00 

where IC is the vortex wavenumber. We recall that the equations from the interaction 
allow a solution with uo, vo and the TS wall pressure even in z and wo, po odd in z. Thus 
we expect that there will be a solution of the nonlinear problem with UOn = UO-n, etc. 
However, in order to allow for the possibility of solutions without this symmetry we did 
not force this constraint. A consequence of this is that there is a mean (independent of 

11 



x, z )  flow induced in the axial direction and an induced pressure gradient in that direction 
is needed to satisfy a mass flow constraint. A similar pressure function arises in the work 
of say DiPrima and Stuart (1975) or Hall (1984). Thus we allowed for such a function in 
our calculations. However, the only nonlinear solutions found had the above symmetries in 
z in which case there is no mean axial flow. It is possible that nonlinear solutions without 
these symmetries exist but they apparently do not bifurcate from the pure vortex flow. 
We postpone until $6 a discussion of the numerical results obtained following the scheme 
outlined above. 

4. The strongly nonlinear interaction between long wavelength Taylor vortices 
and Tollmien-Schlichting waves. 

Here it is assumed that the channel curvature parameter 6 defined by (2.1) is sufficiently 
large to support Taylor vortices with cross-stream wavenumbers of order c = Re-4 More 
precisely we consider the limits 6 + 0,Re + 00 with ? defined by (2.12b) held fixed. In 
this case the basic circumferential flow can support vortices and oblique TS waves with 
comparable axial wavenumbers. The TS waves now have the structure first discussed 
by Smith (1978) in connection with the instability of the flow in an elliptical pipe. The 
overall size of the TS wave is again fixed by the condition that it should be sufficiently 
large in the core to drive the vortex flow at  zeroth order and indeed alter the mean-flow 
profile. The streamwise and time dependence of the wave will again by expressed in terms 
of E = expi{acx - J g d t }  in order to account for the possible evolution of the TS 
frequency as the vortex flow develops in time. The axial dependence of both modes is 
now of course entirely on the 2 = €2 scale. In this case the appropriate expansions of the 
velocity and pressure fields now become 

tnZ 

(4.la, b) 
E + complex conjugate + - - 

- U =  

ia  
p = -122c7 + po+ + . - + c7plE + complex conjugate + - - - . 

Here again the Taylor vortex functions uo, 210, wo, po and the TS functions ~ 1 , 2 1 1 ,  w1, p l  must 
be matched with the appropriate expansions in the wall layers. In fact the Taylor vortex 
functions satisfy (2.14) but with forcing terms arising from the interaction of the Tollmien- 
Schlichting wave with itself. The zeroth order core equations for the TS wave yield the 
solution 

U1 

1 

(4.2a, 6 ,  c ,  d)  
" a [ A J i  U'dv],  

iaU 
- w1 = 

12 I 
i 



Here A is an amplitude function of 2 = cz and the Taylor vortex time scale t. It should be 
noted that A cannot vary on a faster time scale more appropriate to a TS wave alone since 
the Taylor vortex cannot itself respond on such a scale induced by the forcing terms. With 
the form of the TS wave determined in the core the forcing terms in the vortex equations 
in the core can be expressed in terms of A and U. If the vortex pressure is eliminated we 
obtain 

e!!l+!!!!!!z=o, au az 

{a: - dt}uo = fVOUOy + Muo, 

uo = ?lo = wo = 0,  y = 0,l 

where 

M = voay + woaz. 
We have anticipated above that the vortex flow in the presence of a TS wave should still 
satisfy the no-slip condition at the wall. In fact the axial momentum equation for the 
vortex flow in the wall layers is forced by the TS waves. However the forcing function 
decays to zero like the inverse square of the distance from the wall so that the appropriate 
matching conditions for wo are that it should vanish at  y = 0,l. 

It remains for us to determine the structure of the TS wave and Taylor vortex in the 
viscous wall layers. The appropriate expansions in the wall layer at y = 0 are 

[ (2U, PV, c5 W)E + complex conjugate] + - - -} (4.4a, 6 )  

p = -12c7s + c12p0 + - - - + (e7PE + complexconjugate) + - - 
The axial momentum equation for the vortex is now the only equation forced by the TS 
wave. However, the equations for the TS wave depend only on the vortex flow through 
the shear A0 so we do not solve for Vo, Wo and Po here. It suffices to say that the vortex 
equations in the wall layer at y = 0 can be solved such that the solution matches with the 
coreflow vortex solution. The zeroth order equations for the TS waves in the wall layer at  I 
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y = 0 are 

iau + vy + w z  = o  

(4.5a, 6, c, d )  
PY = o  

i(-n + aX0Y)W = -Pz + WYY 

with boundary conditions 
u = v = w = o ,  Y = O  

and matching condition 
U + X o A ,  Y -00 .  

Following Smith (1979) we can solve (4.5d) to give 

where 

6 = A i ( Y - - ) ,  n 6 - -i 4 0 - 1. 
ff A0 A X  

The x velocity component of the TS wave is then given by 

1 rrff 6 
A”[ = -xoPzzLr(6) + ~ x o z P z { 3 L r ( ~ )  + $ (6) 

-W(6)-W,} + BAi(E), 

which matches with the coreflow solution if 

(4.7) 

with K((0) defined by (3.8d). A similar expansion procedure can be carried out in the 
upper layer, while the core equations for the TS wave show that P and Q , the pressures 
in the lower and upper layers respectively, are related by 

1 
P - Q = a 2 A l  U2dy. (4.9) 

The TS pressure P can be written using (4.5b) as 

iaP = A ~ u ~ ~ , ~ = ~ ~  

14 



so that (4.7), (4.8) now give 

where $0 is defined by (3.8b) with t = €0 and 

1 
J = 1 U2dy. 

A similar calculation in the upper layer shows that 

(4.10) 

(4.11) 

(4.12) 

Here A 1  = -a Iy=l and € 1 , $ 1  are obtained from (0 ,$0  by replacing A0 by A1 in the all 
definition of these quantities. Thus the evolution equations (4.3), (4.9), (4.10), (4.12) 
determine the TS and vortex structure as the nonlinear interactions take place. The 
vortex velocity components UO,  W O ,  wo, the Tollmien-Schlichting amplitude A (or P, Q) and 
frequency n are all functions of the vortex time scale t .  Again it should be noted that 
the vortex structure cannot tolerate an evolution on a faster time scale typical of TS wave 
growth. 

Suppose then that, for a given a,?, we are given u ~ , w o , w ~ , P ,  and n. If a guess is 
made for I A lmaz at the next time step (4.3) can be advanced using some finite difference 
discretization in t and y together with a Fourier expansion in 2. The wall equations (4.10), 
(4.12) at the new time step constitute an eigenrelation fl = n(a) and this can be solved for 
the complex n which satisfies this eigenrelation. It is however necessary in our expansion 
procedure for fl to be purely real so the calculation is repeated with a different I A l m a z  in 
order to make fli = 0. At each stage of this iteration procedure A(%) is written as 

and A(z)  is taken from the solution of the eigenrelation at  the new time step. When 
the iteration has converged the scheme can be used to advance the solution again. If 
there are stable equilibrium states (a, = 0) then we would expect that after a sufficiently 
long time the vortex and TS wave would become steady. The above procedure will then 
follow the time dependent evolution of the vortex-TS interaction. Because this calculation 
must be carried out over a significant time interval and there are many values of a,T 
to be investigated it was decided to concentrate on an alternative scheme which would 
locate any equilibrium states directly. In this scheme at is set equal to zero and values for 
cy ,  I A I m a z ,  ? are chosen and a guess is made for A ( z ) .  We then use a Newton iteration 
procedure on the steady vortex equations to find the corresponding equilibrium vortex flow. 

.., 
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The TS wall equations are then solved for the real a and n which satisfy the eigenrelation. 
The new amplitude function A ( 2 )  obtained from this calculation is then used in the vortex 
equations to find an ’updated’ vortex flow. The wall equations are then used to ’update’ 
a,h2 and the procedure continued until the vortex solution and ( a , R )  converge for the 
given value of a, I A lmoz and T .  

It was found that the above iteration procedure converged and typically about 100 
steps in ( 0 , l )  were taken to integrate the vortex equations using a Runge-Kutta scheme. 
The wall equations were solved by expanding P,Q and the coefficients in (4.10)’ (4.12) 
in Fourier series in 2. It was found that about 8 Fourier terms were usually adequate to 
solve the eigenrelation to the accuracy needed to plot the figures given later in this paper. 

.v 

5. 
scribed by the TS-vortex interaction equations. 

Here we demonstrate how the interaction equations can be used to model the three- 
dimensional breakdown of two-dimensional TS waves in a straight channel. Suppose then 
that A ( 2 ,  t ) ,  the wave amplitude in the core region, takes the form 

Secondary instability of two-dimensional Tollmien-Schlichting waves de- 

A ( 2 ,  t )  = Ao(t) + AleiWt cos PZ ( 5 4  

where AI is independent of time and is small compared with the 2D amplitude Ao. If 
A1 = 0 the TS forcing term in (4.3) vanishes identically so that A0 does not itself induce a 
longitudinal vortex field. This means that Ao(t) evolves as the solution of a cubic amplitude 
equation which must be found at  higher order. In fact Ao(t) evolves on a longer time scale 
than t so that in (5.1) A0 can be treated as a constant. We shall determine the values 
of A0 at  which the 3D perturbation in (5.1) is neutrally stable. The precise form of the 
perturbation in (5.1) corresponds to two equally inclined oblique TS waves of the same 
amplitude. 

The vortex velocity field (210, vo, W O )  induced by the TS wave (5.1) can be expressed as 

(uo, vo,wo) = [4a2P2A1Ao(~01, vo1, wo1) cos PZeiwt + complexconjugate] + O(Af). (5.2) 

Here (u01,v01, wol) satisfy the problem 

= o  

1 
= zvolu; 

= -uou; 

y = 0’1 

(5.3) 
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which must be solved numerically (see below). 
In the lower and upper wall layers P and Q expand as 

P = Po + Pl cos PZe'"' 

Q = QO + Q1 cos PZeiWt 

and from (4.9) it follows that 

2 6  2 2 2  PI - Q 1 =  Q [-A1 + 8A1Aoa P J I ]  
5 

where 

J 1  = l1 UOUOldY. 

In fact it can be shown that Q1 = -PI.  If the wall equations are expanded in powers of 
A, then at zeroth order we obtain 

5.6 8 A!o 
Q2 = 

K ~ A  f 
which yields the usual neutral values of a, n when 

(5.4) 

Ai0 - N 1.001, E = -2.2982.i. 
X 

The condition (5.4) ensures that the two-dimensional TS wave is in neutral equilibrium. 
At  next order we find that 

2 0 2 2 2  -5 u' (0) 
1 + y p  Q AoJl = a2A:[-J1 + "-a] 

3 2 (5.5) 

where 

The integral J1 and the shear u01(0) depend on w and (5.5) can be solved by taking real 
and imaginary parts to give 

p 2  = 8 b / d ,  

where 
(5.6a, b, c, d )  

220 
-J1 = c + id. 

3 
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A numerical investigation of (5.3) shows that (5.6a,b) give p2 > 0,a2At > 0 for w > 59.5. 
In fact the right hand side of (5.6b) is positive for w > 0 while the right hand side of (5.6a) 
+ 00 when pa-' -+ 00, and so 3D waves oriented at  all angles to the flow direction can be 
neutral. However, the value of A,, corresponding to p increases monotonically with pa-' 
so that 3D waves propagating almost parallel to the flow direction (i.e. with small p) are, 
in a sense, the most dangerous. Thus (5.6a,b) determine the amplitude of the 2D TS wave 
which is neutrally stable to a pair of oblique waves with wavenumber p. It follows that at  
this amplitude there can be a secondary instability of the 2D TS wave to a pair of equally 
inclined oblique modes. 

6. Results and Discussion. 
We first discuss our results for the interaction problem of $3 which we recall concerns 

Gortler vortices of wavelength comparable with the channel width. In this case, finite 
amplitude vortex flows are possible only for T > T, = 5162 and the least stable ax- 
ial wavenumber has k = 3.951. Since there are no unstable TS waves with streamwise 
wavenumbers O(Re- t) and spanwise wavenumbers O( 1), we restricted our calculations to 

the case T > T, and spanwise wavenumber k = 3.951. 
In Figures 1, 2, we show the dependence of Q I A I and fl on Q for equilibrium states 

corresponding to T = 11,000, and T = 22,000 respectively. We see that at  these Taylor 
numbers the neutral wavenumber and frequency both decrease monotonically as I QA I 
increases. Results for T = 5500 have the same properties and are shown in Table 1. From 
these results, we deduce that the bifurcation diagram for a fixed frequency disturbance is 
as sketched in Figure 3. We have not computed sufficient results to draw such a figure 
in detail because it would require an order-of-magnitude more computing time than that 
needed to generate Figures 1, 2. Linear theory shows that for each of the points of Figures 

a t  O( 1) vortex wavelengths leads to a supercritical bifurcation to a stable mixed TS-vortex 
state. 

Now let us turn to our results for the interaction problem specified by (4.3), (4.9), 
(4.10) and (4.11) corresponding to a longer-scale spanwise dependence. In the absence of a 
finite amplitude Gijrtler vortex, we find that the neutral values of Q and n corresponding 
to an oblique TS wave with A - cos z or A - sin z are 

, 

, 

, 

I 

I 

I 1 , 2  the flow with infinitesimal I A I is unstable. We conclude that the interaction problem 

Q = 4.396 , fl = 20.456. 

In the first instance we confine our remarks to the situation when ? > 23711 so that a 
finite amplitude vortex can exist in the absence of TS waves. In Figure 4 we show how 

18 
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a , R  vary in the presence of a finite amplitude vortex at different values of the Taylor 
number. These values correspond to the linearized problem A + 0 and we see that both 
Q and R increase monotonically with f'. We note that a constant frequency TS wave will 
change from being stable to unstable when r?l is decreased through any point on the curve 
of Figure 4 for r?l greater than its linear neutral value - 23711. 

Next, suppose that the Taylor number is held fixed and the neutral values of CY and n 
are calculated for different values of I A Imoz. When I A 0, then the neutral values of 
a and R must tend back to the neutral values appropriate to the current value of the Taylor 
number. The results of such a calculation are shown in Figure 5 at  two typical values of 
the Taylor number. We see that a! and $2 increase monotonically when I A lmaz increases. 
We conclude that the bifurcation picture for any constant frequency TS wave will be as 
sketched in Figure 6. At first sight, it appears that this is a subcritical bifurcation to a 
mixed vortex-TS state. However, we found earlier that a constant frequency linear TS 
wave changes from being stable to unstable when f' is increased, so that, if we associate 
the terms 'subcritical' and 'supercritical' with the linearly stable and unstable regions, we 
conclude that then a constant frequency disturbance undergoes a supercritical bifurcation 
to a finite amplitude state. A weakly nonlinear analysis of (4.3), (4.9), (4.10), (4.11) shows 
that when this bifurcation occurs the finite amplitude solution is stable and we do not 
expect that there will be any finite time singularities of the full time-dependent problem 
associated with the finite amplitude state. 

Now let us consider the situation when r?l < 23711 so that in the absence of a Tollmien- 
Schlichting wave there is no vortex activity. In order to see the differences which emerge in 
this case, we shall now indicate briefly how an amplitude equation typical of those obtained 
for weakly nonlinear stability problems using the Stuart-Watson method can be retrieved. 
Suppose then that the Taylor number f' is held fixed and that the neutral values of CY and 

R are given by 

a = Q N  , n = n N .  (6.1) 

These are the neutral values appropriate to I A Imoz+ 0 , so that if we now write 

where 6 is small and positive we anticipate that with f' held fixed the appropriate expan- 
sions of Q and R become 

a = (YN + 6& + * ' ' 
(6.2a, b)  
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We see from (4.3) that uo, vo, wo in (4.3) must be expanded as 

uo = 6iicos22 + ... , 

wo = 6ibsin2z+.-- ,  

where i i , G ,  6 satisfy 
dG 
- + 2 i b = o ,  
dY 

d2 ii 

(6.3a, 6) 

. . , " , I  

u = v = U ) = o  , y=O, l .  
.., 

We note that the homogeneous form of (6.3) has a solution if 4T N 23711, so that 

2.- so that ii,C,C necessarily change sign at  ?+. The wall equations (4.10) and (4.12) 

the form 

I 

l G, G, ib then become singular near T = T+ N 5978. In fact, these functions behave like 

together with (4.11) are then found to have a solution only if &,p satisfy an equation of 

&[c + id] + fi[e + if] + g + ih = 0. (6.4) 

T-T+ .-, 
I 

I 

I 
Here c, d, e, f, g and h are real constants , the first four of which arise from the expansions 
of CY and S2 in (4.10) - (4.12) , whilst g and h arise from 0 , the order 6 correction to 
the coreflow. By taking real and imaginary parts in (6.4) we can solve for fi and &. Our 
numerical solution of the full problem for ? > 23711 suggests that there S2 is always 
positive. However, because of the singularity of ii at  ?+ it follows that fi must change sign 

It follows from the above that in the neighbourhood of ?+ there is a change in the 
bifurcation structure of the mixed vortex-TS state; thus on one side of this Taylor number 
the bifurcation will be supercritical whilst on the other side it will be subcritical. In 
fact, this structure is discussed by Hall and Smith (1988a). In the present investigation 
the iteration scheme used to solve the interaction problem of 84 failed to converge for 
Taylor numbers less than 25000. Until the method failed to converge it was found that the 
bifurcation to the mixed state was always supercritical. This suggests that a t  sufficiently 
high Taylor numbers the time dependent interaction problem does not have a finite time 
singularity but that a t  lower Taylor numbers there could be such a singularity associated 
with the subcritical bifurcation. 

I 
I 

I at F = F+. 

I 
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